Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. arch. biol. technol ; 63: e20190348, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132239

RESUMO

Abstract The effect of the anatomical structure of tomato skin may be significant for quality determination at the harvest point, but the definitions of cells that constitute the skin of fleshy fruits, such as tomato, are still unclear, providing contradictory descriptions. The aim of this study was to evaluate the epidermal tissue of different genetic materials of tomato processing (IT761, U2006, TC2736, CVR2909 and F3060) and maturation stage, in order to compare and choose genetic materials with morphological characteristics of the epidermis region more appropriate for the bulk transport. Micrographs were used for cell measurements using the Image J software. Cuticle undergoes thickening during fruit growth, and reduction in full maturation. Genetic materials presenting fruits with thicker cuticle at the harvest stage (CVR2909, F3060 and IT761) were more advantageous due to their mechanical resistance. Cuticle deposition ends before full fruit maturation, resulting in a decrease in the amount of cutin per surface unit, consequently decreasing cuticle thickness in the ripe fruit. The characteristics observed in the tomato fruit mesocarp clearly showed the disruption of the cell wall during the fourth maturation stage related to loss of fruit firmness. Among the new genetic materials, F3060 has a greater potential to become cultivated for industrialization due to its morphological characteristics, such as elevated cuticle thickness and high values for width, height, perimeter and area of epidermal cells in full maturation stage, which make it suitable for bulk transport.


Assuntos
Solanum lycopersicum/citologia , Epiderme Vegetal/citologia , Distribuição Aleatória , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética
3.
Braz. j. biol ; 75(2): 368-371, 05/2015. graf
Artigo em Inglês | LILACS | ID: lil-749688

RESUMO

Studies on the anatomy of Piper leaves demonstrate the presence of a subepidermal tissue distinct from the adjacent epidermis, which cells show thin walls and hyaline contents. Some authors consider such cells a hypodermal tissue, while others refer to them as components of a multiple epidermis. In this study, the nature of this subepidermal tissue was investigated through the analysis of leaf ontogeny in three Piper species. The analysis showed that the referred tissue originates from the ground meristem and, thus, should be considered a hypodermis. The studied species suggests that the role of the hypodermis would be to protect the photosynthetic apparatus from excess light, regulating the intensity of light reaching the chlorophyll parenchyma.


Os estudos de anatomia foliar de espécies de Piper revelam a presença de um tecido subepidérmico distinto da epiderme e cujas células apresentam paredes finas e conteúdo hialino. Estas células são referenciadas por alguns autores como um tecido hipodérmico e por outros, como sendo constituintes de uma epiderme múltipla. Nesse estudo verificou-se a natureza deste tecido subepidérmico a partir da análise da ontogênese foliar de três espécies de Piper. A análise revelou que o referido tecido tem origem do meristema fundamental e, portanto, deve ser denominado de hipoderme. Para as espécies avaliadas, sugere-se que a hipoderme teria função de, proteger o aparato fotossintético do excesso de luminosidade, regulando a intensidade luminosa que atinge o parênquima clorofiliano.


Assuntos
Meristema/citologia , Piper/citologia , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Clorofila/fisiologia , Fluorescência , Meristema/fisiologia , Fotossíntese/fisiologia , Piper/fisiologia , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia
4.
Rev. biol. trop ; 62(2): 819-827, Jun.-Aug. 2014. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-715474

RESUMO

Rice cultivars are affected directly and indirectly by the insect sogata. The mechanical damage or direct loss, is produced after feeding and ovoposition on the young leaves tissues, while the indirect damage is produced after the transmission of the Rice hoja blanca virus. We studied the morpho-anatomic structures associated with the resistance of the mechanical damage produced by the insect, in six rice cultivars, including controls for resistance and susceptibility (Makalioka and Bluebonnet 50), during August 2011, in Fundacion Danac, Venezuela. Samples were taken from leaf 3, where cuticle thickness, presence of macrohair, microhair and silica bodies in the second third of the leaf was evaluated. A significant difference to thickness of the cuticle, the presence of microhair in the leaves, and presence of silica bodies was observed among cultivars, determining a significant correlation among the number of macrohair and microhair in the adaxial leaf blade with the presence of silica bodies, and thickness of the cuticle and number of posed insects. Thickness of the cuticle and presence of silica bodies in the intercostals space of microhair and macrohair showed to be the variables most related to mechanical damage and resistance mechanism.


El arroz es afectado directa e indirectamente por el insecto sogata. El daño directo o mecánico es debido a la postura de huevos y alimentación del tejido foliar por parte del insecto y el daño indirecto que ocurre es por la trasmisión del virus de la hoja blanca del arroz. El ensayo fue conducido en la Fundación DANAC en agosto 2011, con la finalidad de evaluar las estructuras morfoanatómicas asociadas con la resistencia al daño mecánico en seis cultivares de arroz que incluyen a los testigos de resistencia y susceptibilidad (Bluebonnet 50 y Makalioka). En el tercio medio de la tercera hoja, se evaluaron las variables grosor de la cutícula, presencia de macropelos, micropelos y cuerpos silíceos. Se observaron diferencias significativas entre los cultivares para el grosor de cutícula, número de micropelos y presencia de cuerpos silíceos, se determinó una correlación significativa entre el número de macro-pelos y micropelos en la cara adaxial con la presencia de cuerpos silíceos y el grosor de la cutícula y el número de insectos posados a las 96h. El grosor de la cutícula y la presencia de cuerpos silíceos en los espacios intercostales de los micropelos y macropelos mostraron ser los caracteres más relacionados con la resistencia al daño mecánico y los mecanismos de resistencia al insecto.


Assuntos
Animais , Hemípteros/fisiologia , Oryza/parasitologia , Epiderme Vegetal/parasitologia , Folhas de Planta/parasitologia , Interações Hospedeiro-Parasita , Hemípteros/classificação , Oryza/citologia , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Venezuela
5.
An. acad. bras. ciênc ; 82(3): 653-662, Sept. 2010. ilus
Artigo em Inglês | LILACS | ID: lil-556801

RESUMO

The growth in thickness of monocotyledon stems can be either primary, or primary and secondary. Most of the authors consider this thickening as a result of the PTM (Primary Thickening Meristem) and the STM (Secondary Thickening Meristem) activity. There are differences in the interpretation of which meristem would be responsible for primary thickening. In Cordyline fruticosa the procambium forms two types of vascular bundles: collateral leaf traces (with proto and metaxylem and proto and metaphloem), and concentric cauline bundles (with metaxylem and metaphloem). The procambium also forms the pericycle, the outermost layer of the vascular cylinder consisting of smaller and less intensely colored cells that are divided irregularly to form new vascular bundles. The pericycle continues the procambial activity, but only produces concentric cauline bundles. It was possible to conclude that the pericycle is responsible for the primary thickening of this species. Further away from the apex, the pericyclic cells undergo periclinal divisions and produce a meristematic layer: the secondary thickening meristem. The analysis of serial sections shows that the pericycle and STM are continuous in this species, and it is clear that the STM originates in the pericycle.The endodermis is acknowledged only as the innermost layer of the cortex.


O crescimento em espessura do caule de monocotiledônea pode ser primário, ou primário e secundário. A maioria dos autores consideram o espessamento resultante do MEP (Meristema de Espessamento Primário) e do MES (Meristema de Espessamento Secundário). Há divergências de qual seria o meristema responsável pelo espessamento primário. Em Cordyline fruticosa o procâmbio forma feixes vasculares de dois tipos: traços foliares colaterais (com proto e metaxilema e proto e metafloema), e feixes caulinares concêntricos (com metaxilema e metafloema). O procâmbio também forma o periciclo, a camada mais externa do cilindro vascular, constituída por células menores e menos coradas que se dividem irregularmente, formando novos feixes vasculares. O periciclo dá continuidade à atividade procambial, originando somente feixes concêntricos. Concluiu-se ser o periciclo responsável pelo espessamento primário desta espécie. Mais distante do ápice as células pericíclicas passam a sofrer divisões periclinais originando o Meristema de Espessamento Secundário. A análise dos cortes seriados mostra que o periciclo e o MES são contínuos nesta espécie, ficando claro que o periciclo origina oMES. A endoderme é reconhecida, apenas, como a camada mais interna do córtex.


Assuntos
Magnoliopsida/citologia , Diferenciação Celular/fisiologia , Epiderme Vegetal/citologia , Caules de Planta/citologia , Magnoliopsida/classificação , Magnoliopsida/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Caules de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA